Spectral attenuation and backscattering as indicators of average particle size.
نویسندگان
چکیده
Measurements of the particulate beam attenuation coefficient at multiple wavelengths in the ocean typically exhibit a power law dependence on wavelength, and the slope of that power law has been related to the slope of the particle size distribution (PSD), when assumed to be a power law function of particle size. Recently, spectral backscattering coefficient measurements have been made using sensors deployed at moored observatories, on autonomous underwater vehicles, and even retrieved from space-based measurements of remote sensing reflectance. It has been suggested that these backscattering measurements may also be used to obtain information about the shape of the PSD. In this work, we directly compared field-measured PSD with multispectral beam attenuation and backscattering coefficients in a coastal bottom boundary later. The results of this comparison demonstrated that (1) the beam attenuation spectral slope correlates with the average particle size as suggested by theory for idealized particles and PSD; and (2) measurements of spectral backscattering also contain information reflective of the average particle size in spite of large deviations of the PSD from a spectral power law shape.
منابع مشابه
Effects of particle aggregation and disaggregation on their inherent optical properties.
In many environments a large portion of particulate material is contained in aggregated particles; however, there is no validated framework to describe how aggregates in the ocean scatter light. Here we present the results of two experiments aiming to expose the role that aggregation plays in determining particle light scattering properties, especially in sediment-dominated coastal waters. Firs...
متن کاملDetermination of sediments diameter using acoustic waves
The use of acoustic waves in researches related to sea water is of most importance among scientists recently. Since these waves are the only waves, transmitted in water with lowest attenuation and high speed, they can be used in many scientific fields. The main goal of this research is to better understand the physics and mechanisms of sound-seabed interaction, including acoustic penetration, p...
متن کاملSpectral particulate attenuation and particle size distribution in the bottom boundary layer of a continental shelf
Spectral attenuation and absorption coefficients of particulate matter and colocated hydrographic measurements were obtained in the Mid-Atlantic Bight during the fall of 1996 and the spring of 1997 as part of the Coastal Mixing and Optics experiment. Within the bottom boundary layer (BBL) the magnitude of the beam attenuation decreased and its spectral shape became steeper with distance from th...
متن کاملSpectral backscattering properties of marine phytoplankton cultures.
The backscattering properties of marine phytoplankton, which are assumed to vary widely with differences in size, shape, morphology and internal structure, have been directly measured in the laboratory on a very limited basis. This work presents results from laboratory analysis of the backscattering properties of thirteen phytoplankton species from five major taxa. Optical measurements include ...
متن کاملModeling the optical properties of mineral particles suspended in seawater and their influence on ocean reflectance and chlorophyll estimation from remote sensing algorithms.
The optical properties of mineral particles suspended in seawater were calculated from the Mie scattering theory for different size distributions and complex refractive indices of the particles. The ratio of the spectral backscattering coefficient to the sum of the spectral absorption and backscattering coefficients of seawater, b(b)(lambda)/[a(lambda) + b(b)(lambda)], was analyzed as a proxy f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied optics
دوره 54 24 شماره
صفحات -
تاریخ انتشار 2015